Metaanalysis of cataract development after phakic intraocular lens surgery

Li-Ju Chen, MD, Yun-Jau Chang, MD, Jonathan C. Kuo, MD, Rama Rajagopal, FRCS Ed, Dimitri T. Azar, MD

We performed a systematic literature review to determine the incidence of and predisposing factors for cataract after phakic intraocular lens (pIOL) implantation. Of the 6338 eyes reported, 4.35% were noted to have new-onset or preexisting progressive cataract. The incidence of cataract formation was 1.29%, 1.11%, and 9.60% with anterior chamber, iris-fixated, and posterior chamber (PC) pIOLs, respectively. In the PC pIOL group, early cataract formation was related to surgical trauma and late-onset cataract was related to IOL–crystalline lens contact. Analysis of cataract progression in eyes with preexisting cataract showed a progression rate of 29.5% after pIOL surgery. These results suggest that cataract formation is most likely to occur after PC pIOL implantation. Patients with preexisting progressive cataract should be informed about the possibility of cataract progression and possible need for cataract surgery after pIOL implantation. Cataract surgical intervention resulted in restoration of visual acuity.

Phakic intraocular lenses (pIOLs) are used to treat myopia, and recently, hyperopia. Several reports confirm the efficacy and predictability of the pIOLs, although their long-term safety has not been established. Reported complications include corneal decompensation, pupillary ovalization, pupillary block glaucoma, retinal detachment (RD), and endophthalmitis.

The history of pIOLs dates back to Strampelli, who in 1953 implanted minus-powered pIOLs in the anterior chamber (AC) to correct high myopia. Due to severe complications resulting from poor quality, rigidity, and inappropriate length, a high percentage of earlier pIOLs had to be explanted. Despite the well-known setbacks of Strampelli, Barraquer, Choyce, and Momose, the idea of built-in glasses or contact lenses persisted. Since the mid-1980s, progress in manufacturing and surgical techniques has led to the development of 3 major types of pIOLs of modern design: AC angle-fixated pIOLs (AC pIOLs); AC iris-fixated pIOLs (IF pIOLs); and posterior chamber (PC) sulcus-fixated pIOLs (PC pIOLs).

Designed by Baikoff and Joly, modern AC pIOLs are modified Kelman Multiflex-style IOLs in which the thickness and size of the optic and the profile of the haptics were altered to minimize corneal endothelial loss, pupillary ovalization, glare, and halos. The evolution of generations of Baikoff IOLs included the earlier prototypes ZB and ZB5M and the current NuVita. Other variations include ZSAL-4 and Phakic 6 IOLs.

Iris-fixated pIOLs were initially developed in 1986 as the Worst-Fechner biconcave iris-claw IOL for the correction of myopia based on previous successful experiences in aphakic patients. Later, the IOL was modified into the Worst myopia claw IOL, which had a larger convex–concave optic to decrease corneal endothelial damage, glare, and halos. In 1998, the name was changed to the Artisan IOL (distributed by Ophtec) without changing the design. The
Verisyse IOL, the same IOL as the Artisan but with a different brand name (distributed by Advanced Medical Optics), is used exclusively in North America and Japan. In 2004, the Artisan/Verisyse IOL was the first pIOL to receive U.S. Food and Drug Administration (FDA) approval. Because of its firm fixation to the iris stroma, rotation of the iris-claw IOL is less likely. Hence, there are more and more studies of toric Artisan/Verisyse IOLs to correct astigmatism.

Recent progress in the foldable model (Artiflex/Veriflex) to reduce incision size and surgically induced astigmatism is underway. Posterio chamber pIOLs were first introduced in 1986. The original design had a collar-button configuration with the optic located in the AC and the haptics behind the iris. Despite additional modifications in the plate silicone IOL of the Russian design and the Chiron-Adatomed IOL, these silicone IOLs were discontinued due to high cataractogenesis. More recent design modifications allowed the use of a foldable plate convex–concave IOL made of porcine collagen hydroxyethyl methacrylate copolymer (less than 0.1% collagen). This sulcus-fixed Staar Collamer Implantable Contact Lens vaults over the anterior lens capsule and provides space for the aqueous. To avoid confusion with corneal contact lenses, as requested by the FDA, the well-recognized name "Implantable Contact Lens" was changed to the name "Implantable Collamer Lens (ICL)" to retain the ICL acronym. The current Version Four model, also known as the Visian ICL, was approved by the FDA in 2005. A toric ICL for spherocylindrical correction is recently under investigation. A new foldable phakic refractive lens (PRL) made of medical-grade silicone is designed with its haptics resting on the zonule without riding on the sulcus. However, because late complications such as zonular dehiscence and subluxation or dislocation of the PRL into the vitreous cavity have not yet been elucidated, some authors have stopped implanting the PRL for the present time.

Cataract development has been noted after AC, IF, and PC pIOL implantation. Several factors may be involved including surgical trauma, age, piOL–crystalline lens touch (including intermittent contact during accommodation), myopia, bio-incompatibility of the piOL, change in the blood-aqueous barrier (BAB), and chronic subclinical inflammation.

Comparative analyses of the incidence, type, and visual outcomes of cataract formation after implantation of different types of piOL are lacking, and the incidence of cataract after PC piOL implantation has varied within a wide range. We present the results of a retrospective analysis of reports of piOL surgery to determine the location (type), incidence, and outcomes of new-onset cataract and progressive cataract and to explore predisposing factors in and possible mechanisms of cataract formation.

MATERIALS AND METHODS

Study Design

Published journal articles were considered as the elements of study, and a pertinent literature search was performed in 4 stages.

Stage 1 (Unique Citations) A Medline (National Library of Medicine, Bethesda, Maryland, USA) search from 1966 to December 2006 was performed to identify all articles describing piOLS. The terms intraocular lens (IOL) and intraocular lens implantation from the Medical Subject Headings (MeSH) and the text word phakic were used for a broad and sensitive search. Six other searches were performed to look for additional articles (using the text words phakic and lens, the text words phakic and IOL, the text words Artisan lens, the text words Verisyse lens, the text words Collamer lens, and the text words Implantable Contact Lens).

Stage 2 (Article Retrieval) All abstracts from the Medline searches were scrutinized to identify articles that were pertinent to clinical results, surgical techniques, or complications of AC, IF, or PC piOLS. Only journal articles published in English were included. Copies of the articles were obtained, and their bibliographies were searched manually for additional articles published in peer-reviewed journals.

Stage 3 (Article Inclusion) Complete articles were reviewed to identify those that reported original clinical data or complication(s) of piOL implantation. Only articles using microsurgical techniques to implant the 3 major modern designs of piOLS into phakic eyes were included in the study. Of papers covering previously published cases, those adding new case(s) or up-to-date results were included. Care was taken not to double-calculate data of previously published cases.

Stage 4 (Article Exclusion) Complications reported as selected case reports or piOL pathology reports that could not be linked to a clinical series, meaning an incidence could not be calculated, were excluded from the analysis. Articles on cataract complications after piOL implantation in which exact numbers of cataracts were not known were excluded. Partially duplicated series in which the exact patient population could not be clearly differentiated from former published populations were also excluded. Small case studies (subject enrollment <5) that could not be correlated with sequentially published studies were excluded.

Data Abstractions and Analysis

A meticulous and systematic review of the complete articles was performed. All appropriate information regarding aspects of cataracts after piOL implantation was abstracted on 3 spreadsheet programs (Microsoft Excel, Microsoft Corp.) relating to the mutually exclusive groups of AC piOLS, IF piOLS, and PC piOLS. Patient population characteristics were recorded. Complications and their treatment were noted, including removal, replacement, and other reoperations. In the circumstance of reoperation for treating
complications other than cataract, if an eye developed cataract after the reoperation, so that cataract formation could not be primarily linked to pIOL surgery itself, the eye was expelled from the incidence of cataract calculation. To determine the incidence of cataract formation, the sum of new-onset, preexisting cataract plus the ophthalmic (LASIK) and the other eye received an Artisan lens,93,94 there were also 3 studies of biopics.95,96,97

Preoperative Characteristics The review showed 2781 eyes of at least 1729 patients that had implantation of an IF pIOL. Of the 1489 patients for whom data were available, the mean age at implantation was 35.47 years (range 17 to 67 years). After analysis, 41.95% of patients were men. The mean preoperative SE for the Artiflex IOL was –13.00 D (range –18.50 to –30.00 D) in 72 myopic eyes and +4.89 D (range ±1.25 to +10.50 D) in 70 hyperopic eyes. The mean SE in the myopic biopics group was –14.61 D (range –8.25 to –30.00 D) in 67 eyes. The mean follow-up was 26.98 months (range 1 to 91 months) in 1053 eyes.

Intraocular Lens Models Used Of 1161 eyes, 72 received a first-generation ZB IOL; 465, the ZB5M (including 80 ZB5MF); 492, the ZSAL-4; 12, the Phakic 6H; 31, the NuVita, 55, the Newlife/Vivarte Presbyopic; and 34, the AMO multifocal pIOL prototype.

Postoperative Complications The complications (number of eyes) were halos and/or glare (294); pupil ovalization (146); intraocular pressure (IOP) increase (129); IOL rotation (56); uveitis (41); decentration (35); iris atrophy (13); RD (10); corneal edema (9); secondary refractive procedure for residual refractive error (6); inflammatory deposits on IOL (5); eye pain (5); cystic wound or wound leak (4); pigment deposits on IOL (4); incorrect power calculation (2); postoperative atonic pupil (Urrets-Zavalia syndrome) (2); macular hemorrhage (2); giant papillary conjunctivitis due to suture exposure (1); endothelial pigment dispersion (1); excessive vaulting (1); loop foot in iridectomy site (1); and diplopia due to large iridectomy (1) (Figure 1, A). One eye developed RD after pIOL implantation and had 2 RD surgeries; the pIOL was explanted during the second RD surgery. Forty-five eyes required reoperations for complications other than cataract (Figure 2, A).

Category, Type, Incidence, and Outcomes of Cataracts The review showed 16 eyes with cataract (15 new onset, 1 preexisting nonprogressive) in 6 studies. Of the 15 new-onset cataracts, 9 were nuclear sclerotic (NS), 3 were nonprogressive posterior subcapsular cataract (PSC), 2 were nonprogressive anterior subcapsular cataract (ASC), and 1 was ASC and PSC.

The incidence of cataract formation with AC pIOLs was 1.29%. The incidence with the ZB5M and ZSAL-4 pIOL models was 2.58% and 0.61%, respectively. No cataracts were reported in eyes with the ZB, NuVita, Phakic 6H, Newlife/Vivarte Presbyopic, or AMO multifocal prototype pIOL. The mean time from pIOL implantation to development of new-onset cataract was 33.10 months.

Ten (9 NS, 1 ASC and PSC) of the 15 new-onset cataracts required surgery. All eyes had successful and uneventful cataract surgery with removal of the AC pIOL and implantation of PC IOL in the bag.

Subgroup Analysis of Iris-Fixed Anterior Chamber Phakic Intraocular Lenses There were 4 reports of IF AC pIOLs in both hyperopic and myopic eyes91,92,93,94 and 5 reports in hyperopic eyes95,96,97,98,103; the other IF AC pIOLs were in myopic eyes. In 2 reports, 1 eye of a patient received laser in situ keratomileusis (LASIK) and the other eye received an Artisan lens93,94 there were also 3 studies of biopics.95,96,97

Preoperative Characteristics The review showed 2781 eyes of at least 1729 patients that had implantation of an IF pIOL. Of the 1489 patients for whom data were available, the mean age at implantation was 35.47 years (range 17 to 67 years). After analysis, 41.95% of patients were men. The mean preoperative SE for the Worst-Fechner biconcave IOL was –14.51 D (range –5.00 to –31.75 D) in 225 eyes. The mean preoperative SE for the Artisan IOL eyes was –12.89 D (range –1.50 to –29.00 D) in 1637 myopic eyes and +6.39 D (range 0.00 to +18.00 D) in 277 hyperopic eyes. The mean preoperative SE for the Artiflex IOL was –8.97 D (range +4.00 to –13.00 D) in 72 eyes. The mean SE in the myopic biopics group was –18.34 D (range –16.00 to –23.00 D) in 34 eyes. The mean SE in the hyperopic biopics group was +7.39 D (range +5.25 to +9.75 D) in 39 eyes. The mean follow-up was 32.76 months (0.25 to 158 months) in 2165 eyes.

Intraocular Lens Models Used Of the 2781 eyes, 318 had a first-generation Worst-Fechner biconcave iris-claw IOL, 2075 had an Artisan/Verisyse IOL for myopia (including the Worst myopia claw IOL and the Artisan toric IOL for myopia), 316 had an Artisan/Verisyse IOL for hyperopia (including the Artisan toric IOL for hyperopia), and 72 had an Artiflex IOL.

Postoperative Complications The complications (number of eyes) were halos and/or glare (244); uveitis (125); IOP increase (118); iris atrophy (65); pigment deposits on IOL (48); corneal edema (47); decentration (46); cystic wound or wound leak (40); pupil ovalization (40); pigment dispersion (40); iris atrophy (13); RD (10); corneal edema (9); secondary refractive procedure for residual refractive error (6); inflammatory deposits on IOL (5); eye pain (5); cystic wound or wound leak (4); pigment deposits on IOL (4); incorrect power calculation (2); postoperative atonic pupil (Urrets-Zavalia syndrome) (2); macular hemorrhage (2); giant papillary conjunctivitis due to suture exposure (1); endothelial pigment dispersion (1); excessive vaulting (1); loop foot in iridectomy site (1); and diplopia due to large iridectomy (1) (Figure 1, A). One eye developed RD after pIOL implantation and had 2 RD surgeries; the pIOL was explanted during the second RD surgery. Forty-five eyes required reoperations for complications other than cataract (Figure 2, A).
Figure 1. Bar charts show the complications after 1161 AC pIOL implantations (A), 2781 IF pIOL implantations (B), and 2396 PC pIOL implantations (C). Cataract formation was most likely to occur after PC pIOL surgery. *Includes 1 eye with giant papillary conjunctivitis, 1 with endothelial pigment dispersion, 1 with excessive vaulting, 1 with loop foot in iridectomy site, and 1 with diplopia. *Includes 7 eyes with IOL replacement (reason not clear), 2 with pIOL removal due to inability to observe endothelium, 2 with diplopia, 1 with pIOL removal due to frequent eye rubbing, 1 with wound infection, 1 with a damaged haptic, 1 with iris prolapse, and 1 with retinitis centralis serosa. **Includes 2 eyes with IOL replacement (reason not clear), 1 with iris prolapse, 1 with pupil ovalization, 1 with pupillary entrapment of IOL, 1 with a broken lens, 1 with removal due to aberrant ciliary body anatomy, 1 with progressive dry macular degeneration, and 1 with retinal hole.
incorrect power calculation (8); traumatic dislocation (8); IOL replacement, with the reason not clear (7); striate keratitis (6); nonpigmented keratoprecipitates (6); hyphema (4); RD (4); giant papillary conjunctivitis due to suture exposure (3); secondary refractive procedure for residual refractive error (3); iris perforation by the claw haptic (3); postoperative atonic pupil (3); IOL removal due to ocular nystagmus and inability to observe endothelium (2); diplopia (2); IOL removal due to frequent eye rubbing (1); wound infection (1); damaged haptic (1); iris prolapse (1); retinitis centralis serosa (1) (Figure 1, B). Three eyes received 2 reoperations. One eye developed pigment dispersion and had pIOL removal with perioperative cleaning of the anterior lens capsule. Subsequent cataract extraction was performed 2 months after pIOL explantation. Two eyes of a patient developed uveitis, corneal edema, and IOP elevation and had 2 reoperations in both eyes (pIOL removal, lens extraction, trabeculectomy, and later corneal transplantation, keratoprosthesis surgery). Ninety-one eyes required reoperations for complications other than cataract (Figure 2, B).

Category, Type, Incidence, and Outcomes of Cataracts

The review showed 41 eyes with cataract (20 new onset, 11 preexisting progressive, and 10 preexisting nonprogressive) in 15 studies. Of the 20 new-onset cataracts, 10 were NS, 8 were cortical vacuoles, and 1 was ASC; the data for 1 eye were not clear. Of the 11 preexisting progressive cataracts, 5 were NS and 4 were PSC; the data for 2 eyes were not clear. In 10 patients, preexisting cataracts were nonprogressive (4 NS, 2 cortical opacities, 2 PSC, and 2 data not clear).

The incidence of cataract formation with IF pIOLs was 1.11%. The incidence with the Worst-Fechner biconvex, myopic Artisan/Verisyse, and hyperopic Artisan/Verisyse IOLS was 2.20%, 1.11%, and 0.32%, respectively. No cataracts were reported with the Artiflex model. The mean time from pIOL implantation to development of new-onset cataract was 37.65 months.

Ten of the 20 (10 NS) new-onset cataracts required surgery, as did 6 (4 PSC, 2 NS) of the 11 preexisting progressive cataracts. All eyes had uneventful pIOL explantation and cataract surgery.

Subgroup Analysis of Posterior Chamber Phakic Intraocular Lenses

There were 9 reports of PC pIOLs in both hyperopic and myopic eyes119-121, 124, 140, 141 and 3 in hyperopic eyes147, 148, the rest were in myopic eyes. Two groups of pediatric patients had IOL implantation,119, 130 and 3 groups had the bioptics technique.116, 117, 124

Preoperative Characteristics

The review showed 2396 eyes of at least 1210 patients had PC pIOL implantation. Of the 1064 patients for whom data were available, the mean age was 35.47 years (range 3 to 64 years). After analysis, 40.92% of the patients were men. The mean preoperative SE was −13.21 D (range −3.00 to −39.60 D) in 1988 myopic eyes and +6.28 D (range +2.25 to +11.75 D) in 181 hyperopic eyes. The mean SE in the bioptics group was −20.56 D (range −13.40 to −35.00 D) in 136 eyes. The mean follow-up time was 19.23 months (0.25 to 72.00 months) in 2135 eyes.

Intraocular Lens Models Used

Forty-two eyes had implantation of a plate silicone IOL of the Russian design (Fyodorov), 226 eyes of a Chiron-Adatomed IOL, and 1933 eyes of a Staar Collamer ICL (218 V2 or earlier models, 249 V3
models, 877 V4 models, and 589 design not specified). One hundred ninety-five eyes had implantation of a PRL (59 PRL100, 58 PRL101, 25 PRL 200, and 53 designs not specified).

Postoperative Complications

The complications (number of eyes) were pigment deposits on IOL (260); halos and/or glare (142); IOP increase (115); decentration (78); secondary refractive procedure for residual refractive error (67); pigment dispersion (63); poor vault (17); incorrect power calculation (9); RD, including 1 giant retinal tear after trauma (9); corneal edema (7); mydriasis (7); high vault (5); white plaques on the anterior surface of natural lens (sodification).

Figure 2. Bar charts show the etiology of reoperation after 1161 AC pIOL implantations (A), 2781 IF pIOL implantations (B), and 2396 PC pIOL implantations (C). The most common cause of pIOL explantation in all 3 groups was cataract. *Includes keratorefractive surgery, suture, repair, paracentesis, AC irrigation, trabeculectomy, surgical iridectomy, and RD surgery. *Includes 5 eyes that had corneal transplantation (2 = secondary; P IOL = phakic IOL). (Eyes that received more than 2 reoperations are not included in this figure; see text for details.)
due to incomplete ophthalmic viscosurgical device (OVD) removal (5); uveitis (3); macular hemorrhage (3); IOL replacement, with the reason not clear (2); iris prolapse (1); pupil ovalization (1); pupillary entrapment of the IOL (1); broken IOL (1); IOL removal due to aberrant ciliary body anatomy (1); progression of dry macular degeneration (1); retinal hole (1) (Figure 1, C).

Seven eyes had 2 or more reoperation as follows: 2 eyes, decentration–recentration and exchange; 1 eye, incorrect power and poor vault (LASIK), pIOL replacement, and removal; 1 eye, pupillary block glaucoma (immediate surgical iridectomy and later pIOL removal combined with subsequent cataract extraction with PC IOL implantation); 1 eye, neovascular glaucoma (2 trabeculectomies) and pIOL removal combined with phacoemulsification of the clear lens with PC IOL implantation; 1 eye, malignant glaucoma (surgical iridectomy), pars plana vitrectomy (PPV), lensectomy, pIOL removal, and later PC IOL implantation; 1 eye, giant retinal tear after trauma (PPV, lensectomy, pIOL removal, and PPV again with silicone oil injection). One hundred fifty-seven eyes required reoperations for complications other than cataract (Figure 2, C).

Category, Type, Incidence, and Outcomes of Cataracts

The review showed 262 eyes with cataract (223 new onset, including 6 eyes developing an ASC after intraoperative surgical iridectomy or neodymium:YAG [Nd:YAG] iridotomy; 7 preexisting progressive; and 32 preexisting nonprogressive) in 35 studies. There were 223 new-onset cataracts (195 ASC, 5 NS, 4 ASC and cortical opacities, 3 ASC and NS, 3 anterior cortical opacities, and 13 eyes data not clear). Seven eyes had preexisting progressive cataract (3 NS, 2 cortical opacities, 1 ASC and PSC, and 1 ASC); 32 eyes had preexisting nonprogressive cataracts (14 cortical opacities, 6 NS, 4 ASCs, 3 PSC, 2 ASC and PSC, and 3 eyes data not clear).

The incidence of cataract with PC pIOLs was 9.60%. The incidence in the Chiron-Adatomed, Staar Collamer, and PRL groups was 25.66%, 8.48%, and 3.59%, respectively. The incidence of cataract formation with the hyperopic Staar Collamer ICL was 11.05%. Only 2 papers evaluated the Russian-design pIOLs, and only 1 preexisting progressive cataract was reported. This IOL was taken off the market because of high cataractogenesis. Due to the paucity of reported information, no attempt was made to calculate the incidence of cataract formation of this IOL model.

In the 99 eyes with new-onset cataract in the Staar Collamer group for which data were available, the mean time of development of cataract from pIOL surgery was 16.67 months (range 1 day to 44 months). In the 42 eyes with new-onset cataract in the Chiron-Adatomed IOL group for which data were available, the mean time from implantation to appearance of cataract was 11.96 months (range 1 week to 24 months). Of the 7 eyes with new-onset cataract in the PRL group for which data were available, 6 developed cataract immediately after surgery due to surgical trauma and the other eye developed cataract 24 months after pIOL surgery.

Where data were available, the mean lapsed time between pIOL implantation and cataract surgery was 22.93 months (16 eyes) in the Staar Collamer ICL group and 17.15 months (16 eyes) in the Chiron-Adatomed IOL group for which data were available, the mean time from implantation to appearance of cataract was 11.96 months (range 1 week to 24 months). Of the 7 eyes with new-onset cataract in the PRL group for which data were available, 6 developed cataract immediately after surgery due to surgical trauma and the other eye developed cataract 24 months after pIOL surgery.

Where data were available, the mean lapsed time between pIOL implantation and cataract surgery was 22.93 months (16 eyes) in the Staar Collamer ICL group and 17.15 months (16 eyes) in the Chiron-Adatomed IOL group. Seventy-six eyes with new-onset cataract (57 ASC, 3 ASC and NS, 3 ASC and cortical opacities, 3 NS, and 10 eyes data not available) and 6 eyes with preexisting progressive cataract (3 NS, 1 ASC and PSC, 1 ASC, 1 cortical opacity) had cataract surgery. All eyes had uneventful pIOL removal and cataract surgery.
Overall Characteristics

The review showed that primary pIOLs (1161 AC, 2781 IF, and 2396 PC) were implanted in 6338 eyes, of which 258 had new-onset cataract (15, 20, and 223, respectively) and 61 had preexisting cataract (1, 21, and 39, respectively). In terms of preexisting cataract, 43 were nonprogressive (1, 10, and 32, respectively) and 18 (11 IF, 7 PC) were progressive (Figure 3).

According to our definition, the overall incidence of cataract formation was 4.35%. The incidence of cataract formation was 1.29%, 1.11%, and 9.60% in the AC pIOL, IF pIOL, and PC pIOL groups, respectively. The incidence of types of cataract formation with various IOL models is shown in Figure 4.

Among the new-onset cataracts, NS was the predominant type in the AC group (9, 60.00%) and IF group (10, 50.00%) whereas ASC was the predominant type in the PC group (202, 90.58%). Most new-onset ASCs in the PC group were nonprogressive or slowly progressive, and 63 eyes (31.19%) required surgery. All new-onset NS cataracts in each group were visually significant, and all eyes with new-onset NS cataract in the AC and IF groups required surgery. Operations were performed in 12 eyes (19.67%) with preexisting cataract.

The most common complications after pIOL implantation in the AC group and IF group were halos and/or glare (294 eyes and 244 eyes, respectively) and pigment deposits on the IOLs in the PC group (260 eyes) (Figure 1). The most common reason for pIOL explantation in all pIOL groups was cataract formation (Figure 2).

DISCUSSION

Contemporary surgical techniques to correct refractive errors include keratorefractive surgery, clear lens extraction, and pIOL implantation. Each option has its advantages and disadvantages.

Keratorefractive surgery avoids the risks of open-globe surgery, but it is not without limitations. Important shortcomings are irreversibility (except intrastromal corneal ring segments), dependence on wound healing, restrictions based on corneal thickness, induction of higher-order optical aberrations, and less predictability in cases with high refractive errors. Clear lens extraction has the drawback of accommodation loss in young patients and an increased risk for RD.

Phakic IOLs have the advantages of reversibility, high optical quality, potential gains in best corrected visual acuity because of retinal magnification in myopic eyes, amount of correction not limited by corneal thickness, and preservation of corneal architecture and accommodation. They are implanted using standard microsurgical techniques, and the learning curve is not difficult for ophthalmic surgeons. The combination of pIOL implantation and LASIK (biopics) for extreme myopia correction and coexisting astigmatism correction seems promising.

Recent innovation in toric pIOLs make spherocylindrical correction available in a single surgery, especially in patients with thin corneas. However, pIOLs are not without complications. Major concerns with the AC pIOLs include corneal endothelial loss, damage to the iridocorneal angle and glaucoma, pupil ovalization, and cataract formation. The complications of chronic low-grade iritis, late endothelial damage, and corneal decompensation after IF pIOL implantation remain a concern. Posterior chamber pIOLs are also called prelens IOLs. Avoidance of pigment...
dispersion and cataract formation is important in this group. To decrease the incidence of the above complications, an ideal pIOL demands certain requirements, which are shown in Figure 5.

Fitting of a proper pIOL requires correct power selection and length determination. The selection of optical power is based on the van der Heijde formula for most nonfoldable AC pIOLs and IF pIOLs. The formula contains the following parameters: preoperative and desired postoperative refraction in the spectacle plane, corneal power, and AC depth (ACD) (distance between the anterior corneal surface and the cardinal plane of the IOL). In this calculation, there is no need to measure axial length (AL); this is in contrast to the calculation in aphakic eyes. The AL measurement can be misleading; a refractive surprise can occur as a result of a posterior staphyloma in myopia attenuation and reverberation of sound waves. The predictability of refractive outcome was generally good in the AC and IF groups. The calculation of Staar Collamer PC pIOL power was performed with proprietary formulas with independent variables of preoperative SE refraction, vertex distance, keratometry, ACD, and corneal pachymetry. The corneal thickness must be subtracted from the biometry value of the ACD to get the actual ACD. Having early experience of undercorrections, Zaldivar et al. and Davidoir et al. suggest making adjustments to refine predictability based on target postoperative refraction, pIOL availability, and the surgeon’s experience. It is not possible to obtain emmetropia in every patient because of the limitations in the power of the pIOL. In our series, 16 eyes had reoperations for incorrect power calculation. In addition, 76 eyes had secondary refractive procedures for residual refractive error. One other patient had multiple surgeries in addition to treatment for incorrect power. Two patients with wrong calculation of the pIOL power had no surgical procedure.

The sizing of AC and PC pIOLs is very important. If the AC pIOL is too long, it vaults too much and may cause corneal endothelial damage, pupil ovalization, or angle erosion; conversely, if it is too short, it may cause IOL rotation, IOL displacement into the AC, and damage to the AC angle. If the PC pIOL is too long, it also vaults too much; this may lead to narrowing of the angle and iris pigment dispersion. It may also result in increased mechanical pressure on the ciliary body. If, however, the PC pIOL is too short, it may vault too little and contact the crystalline lens centrally. Decentration is also a possibility. It had been impossible to measure the internal corneal diameter or sulcus-to-sulcus distance precisely, however, new anterior imaging techniques, including optical coherence tomography (OCT), have resulted in more reliable internal diameter measurements of the corneal diameter that can be used for sizing AC pIOLs and determining critical distances from the AC pIOL edge to the peripheral corneal endothelium and the shape of the iris (convex versus flat configuration). At present, the limbal white-to-white (WTW) diameter is used to empirically estimate these distances. The AC pIOL length was approximated by measuring the horizontal WTW corneal diameter and adding 0.5 or 1.0 mm to it to fit the internal intertrabecular distance in myopia or hyperopia according to the pIOL model. For the PC pIOL (except the PRL), 0.5 or 1.0 mm was added to the horizontal WTW diameter in myopia; 0.5 mm was subtracted in hyperopia. However, after noticing a high incidence of cataracts, the manufacturing company now recommends implanting a hyperopic ICL 0.5 mm longer than the measured WTW. For the PRL, the horizontal WTW distance is usually selected for myopic or hyperopic eyes. Pop et al. found using limbal measurement to estimate sulcus size is inadequate because limbus size alone cannot predict sulcus size. In contrast, the length of the IF pIOL was generally “one size fits all” (8.5 mm for adults, 7.5 mm for children or small eyes). The use of ultrasound biomicroscopy (UBM) can identify the distance between an AC pIOL or an IF pIOL and the corneal endothelium, iris, angle, and crystalline lens surface. However, UBM cannot measure the internal corneal diameter. For PC pIOLs, preoperative UBM can help detect the size of the ciliary sulcus and anomalies such as iridociliary cysts. Postoperatively, it can locate the position of the PC pIOL in relation to the ciliary body, iris, lens, and zonules. Recently, high-frequency

Figure 5. Requirements of an ideal pIOL.

- Easy insertion, removal, or exchange that does not require a large wound
- Adequate fixation not causing pressure over fixed tissue
- Relatively thin A–P diameter, not touching adjacent ocular tissue
- Good finish, polishing, and biocompatibility
- Large functional optic with no glare design
- Negative and positive sphero-cylindrical powers with multifocal correction
- Affordable

A–P = antero–posterior
ultrasound biometry (50 MHz) and very high frequency ultrasound biometry (100 MHz) have been reported to be useful in delineating sulcus size.25,47,163 Optical coherence tomography has been used to study the internal dimensions of the AC and pIOL vaulting; however, this imaging modality has limitations in exploring the PC behind the iris pigment as its energy is blocked by the iris pigment.164

Most patients who had pIOL surgery were older than 18 years and had stable myopia for 1 year. However, there were pediatric series of PC pIOL implantation and case reports of IF pIOL implantation (not included in our study) to treat anisometropic amblyopia with good results. There are safety guidelines for corneal endothelial count and ACD.42 Most studies excluded ocular pathologies such as preexisting cataract and macular degeneration. Patients with peripheral retinal degeneration were accepted and treated with laser photocoagulation before pIOL surgery. Zaldivar et al.116 suggest using LASIK to treat myopia up to −12.00 D, PC pIOL implantation to treat −12.00 to −18.00 D of myopia, and bioptics to treat myopia greater than −18.00 D.

Surgical maneuvers with various types of pIOLs should avoid trauma to the corneal endothelium, angle, and crystalline lens. Preoperatively, the pupil is constricted with the AC and IF pIOLs and widely dilated with the PC pIOL. The use of intraoperative miotics can reduce the risk for crystalline lens touch with AC and IF pIOLs. Phakic IOL implantation can be done under topical, sub-Tenon, peribulbar, retrobulbar, or general anesthesia according to surgeon preference and patient personality.24,34,142 Three types of incisions can be performed in nonfoldable AC pIOL surgery: classic lateral corneal,23 superior limbal,60 and steepest meridian limbal.4 A silicone slide sheet can be used to aid the introduction of the AC pIOL without damaging the crystalline lens.4,60 Gonioscopic evaluation at the end of surgery to ensure good position of the haptic ends has been suggested.4,167 With the IF pIOL, centration and fixation are the most crucial steps in terms of the immediate postoperative results. Care must be taken to make secure entrapment of the midperipheral iris fold to the iris claws with iris enclavation forceps or “iris crochet needles”68 and make precise centration over the pupil.9 If toric iris-claw IOLs are to be implanted, the desired location is marked preoperatively to obtain the correct axis of the IOL.33,37 With the advent of the foldable Staar Collamer ICL, the properly oriented IOL can be implanted with an injector115 or a forceps.110 Separate maneuvers to gently tuck both footplates of the PC pIOL under the iris instead of rotationally dialing them in is suggested to avoid pigment dispersion and probable crystalline lens touch.41,115,128 At the end of surgery, the pupil is constricted using an intraocular miotic agent. Although Baikoff and Colin167 think that peripheral iridectomy is not always necessary when their IOLs are used, most surgeons recommend preoperative peripheral laser iridotomy or surgical iridectomy with all types of pIOLs to prevent pupillary block.13,41,60,88

The surgical iridectomy site is chosen to avoid footplate incarceration of the AC pIOL.167 Zaldivar et al.115 suggest using an argon laser before applying Nd:YAG spots at least 4 days before PC pIOL implantation to decrease iris bleeding and pigment deposition on the pIOL. Hoffer168 introduced an atraumatic pigment vacuum iridectomy technique with a 25-gauge cannula that might prevent the need for a preliminary laser iridectomy.

In our study, we found that the definition of cataract was arbitrary. Only 5 papers,27,43,51,53,128 from 3 studies used the Lens Opacities Classification System (LOCS) III169 to assess lens opacities and 1 paper141 used the LOCS II170 to assess the clarity of the crystalline lens. In an attempt to classify the risk factors and mechanisms for cataract development, we divided them into the following categories.

Patient-Dependent Factors

Age at Phakic Intraocular Lens Implantation Based on their studies of pIOLs, Alió et al.,53 Uusitalo et al.,54 Menezo et al.,74,75 Conyers et al.,129 Lackner et al.,135 and Sarikkola et al.141 suggest that the older the patient at the time of IOL implantation, the higher the chance of cataract. Alió et al.53 concluded that patients older than 40 years at the time of AC pIOL surgery have a higher incidence of nuclear cataract formation. Menezo et al.74,75 also found that patient age (>40 years) can be considered a prognostic factor of nuclear cataract development after IF pIOL implantation. Convers et al.129 propose that resistance to ICL-induced cataract decreases with age. In their series, 14% of young patients (aged 10 to 40 years) and 37% of older patients (aged 41 to 50 years) developed cataract. Uusitalo et al.54 regard aging (44 years old at the time of ICL implantation) as one factor causing cataract formation in both eyes of a patient. In addition, the good results in the pediatric series119,130 suggest that patients at a young age are more apt to tolerate a pIOL. A recently suggested age criterion (age <45 years) was proposed by the ICL manufacturer135 Baikoff et al.101 report a recent insight into the effect of a convex iris shape that leads to increased lens rise with a higher postoperative risk for posterior synechias and subsequent cataract formation after Artisan/Artiflex pIOL implantation.

Refractive Status The prevalence of cataract is 4 times higher in patients with high myopia than in the normal
population.171 Alió et al.,53 Uusitalo et al.,54 and Menezo et al.,75 suggest that an increase in AL could be a risk factor. Alió et al.,53 found that with AC pIOLs, eyes with an AL greater than 30.0 mm had a higher incidence of NS cataract. Similarly, Menezo et al.,75 suggest that AL (> 30 mm) is a prognostic factor for nuclear cataract formation after IF pIOL implantation. Govers et al.,126 also showed that in eyes with PC pIOLs, myopia was more pronounced in the ASC group than in the clear lens group. In Sanders et al.’s study of ICLs,43 all clinically significant cataracts (both NS and ASC) occurred in the group with myopia greater than \(-10.00 \text{ D}\).

Trauma Ocular trauma was more commonly associated with pIOL dislocation or subluxation than with cataract.6,87,99,118 However, cataract might ensue from direct or indirect ocular trauma in the patient.127,172 Alió et al.,53 and Sanders et al.,43 report 1 patient each with pIOL implantation developing cataract after vitreoretinal manipulation.

Clinical Inflammatory Reaction Iridocyclitis associated with pIOLs and topical steroid agents may induce cataract.69 Postoperative acute uveitis and sterile hypopyon were easily controlled in most cases with steroid therapy within 1 or 2 weeks without sequelae.60,85,99,123 Nevertheless, Fechner et al.,55 report 2 eyes of a patient that rapidly developed cataracts, the formation of which originated from a violent reaction to PC pIOL insertion and collection of leukocytes between the natural and artificial lenses. Phakic IOL removal and cataract surgery were performed in both eyes within 1 week of pIOL surgery. Leccisotti and Fields,67 report 1 eye of a patient having 3 episodes of chronic iridocyclitis in the first 8 months after AC pIOL implantation. The eye developed cataract and posterior synechias that eventually required cataract surgery.

Preexisting Opacities Alió et al.,53 postulate that AC pIOL implantation in eyes with early changes in the nucleus might promote the progression of these changes into the development of a clinically significant NS cataract. Sarikkola et al.,141 found that preexisting lens opacity was a risk factor for cataract formation after ICL implantation. In our study, 19.67% of eyes with preexisting cataract ultimately required lens extraction surgery after pIOL surgery.

Intraocular Lens-Dependent Factors

Lens Model The anatomic location of the pIOL seems to play a role in cataract formation. Our analysis showed that the incidence of cataract was much higher with PC pIOLs than with AC and IF pIOLs. The PC pIOL, because of its proximity to the natural lens, has a higher chance of causing a pressure effect or metabolic imbalance of the lens.135 The chronic subclinical inflammation induced by changes in the permeability of the BAB barrier after pIOL implantation also raises the concern of cataract formation, just as in uveitis and diabetes.8,40,53,56,80 The continuous disruption of the BAB was related to contact between the uveal tissue (iris and ciliary body) and the pIOL.7 Laser flare-cell meter measurement is an objective and reproducible method for in vivo evaluation of anterior segment inflammation.95 Fluorophotometry provides another method for assessing the integrity of the BAB.80 Fechner et al.,91 using a laser flare-cell meter and iris fluorescence angiography, did not find anterior segment chronic inflammation for at least 13 months after Worst-Fechner biconcave IOL implantation. However, Alió et al.,72 detected much higher flare values in the Worst-Fechner group than in the Baikoff ZB5M group and thus regarded the Worst-Fechner biconcave IOL as a proinflammatory IOL. The unacceptable high flare values in the Alió et al. study might be due to an artifact during measurement with the laser flare-cell meter.8,25,95 Pérez-Santonja et al.,80 using fluorophotometry, showed an increase in the BAB that might last at least 14 months after Worst-Fechner biconcave IOL implantation. In a later study by Pérez-Santonja et al.,8 postoperative flare values in the Worst-Fechner biconcave IOL group were higher than in the Baikoff ZB5M IOL group up to 24 months postoperatively, although the difference was not significant. The flare values of the Staar Collamer ICLs reported by Jiménez-Alfaro et al.,7 and Sanders136 were much lower than those of the Worst-Fechner biconcave IOL and Baikoff ZB5M IOL reported by Pérez-Santonja et al.8 Sanders136 concluded implantation of the Staar Collamer IOL does not cause a long-term (2 to 3 years) inflammatory response in the eye.

Even when implanted in the same anatomic location, different IOL models result in a variable incidence of cataract. Because the Fyodorov and Chiron-Adatomed IOLs had a much higher incidence of cataract, they were discontinued. The incidence of cataract with the Chiron-Adatomed IOLs has been reported to be from 0%123 to 52.9%.109 Refinements in design of the Staar Collamer ICLs caused a significant drop in the incidence of cataract.51,112 In the literature, the incidence of cataract with Staar Collamer ICLs is reported to be from 0%7 to 33.3%.134 In 12 patients, Menezo et al.,112 implanted a Chiron-Adatomed IOL in 1 eye and a Staar Collamer ICL in the other eye; there was a higher incidence of ASC in the former group (4/12 [33.3%] versus 3/12 [25.0%]). In our review, we found that the incidence of cataract formation was 25.66% with the Chiron-Adatomed pIOL and 8.48% with the Staar Collamer ICL and the percentage of cataract surgery.
for new-onset cataract, 45.61% and 30.82%, respectively.

Higher cell deposit rates have been found with the Artiflex pIOL. Tahzib et al.34 report a 54-year-old man who developed a severe cell deposition 1 week after implantation of a foldable Artiflex pIOL. Upon explantation of the pIOL, scanning electron microscopy showed multiple cell deposits. Kohnen et al.173 evaluated the surface quality of new-generation pIOLs and found minor surface roughness only at the claws of an Artisan IF AC IOL.

Lens Vaulting Parameters of vaulting include the pIOL’s overall length (overall diameter) and design (shape). In the AC and IF groups, a decrease in vault and thinner anteroposterior diameter helped lessen damage to the endothelium.24,92 In the AC group, the pIOL–crystalline lens distance was estimated to be 0.78 to 1.96 mm with the ZB pIOL,52 0.48 to 0.81 mm with the ZB5M pIOL,59 0.79 ± 0.24 mm with the ZSAL-4 pIOL,4 and 0.57 to 1.03 mm with the NuVita.76 With IF pIOLs, the distance between the pIOL and the natural lens necessary to ensure adequate aqueous flow has been found to be 0.8 mm with the Worst-Fechner,88 between 0.78 mm and 0.93 mm with the Artisan for myopia,160 and between 0.35 mm and 0.79 mm with the Artisan for hyperopia.159 The implantation of a pIOL in the AC is thought to induce less cataract formation than implantation in the PC because the distance between the pIOL and the natural lens is larger in the former, minimizing the risk for progressive mutual contact between the pIOL and the natural lens.174,175

In the PC group, IOL size plays an important role in the extent of vault.111 Phakic IOLs with increased diameter, and thus increased vault, buckle forward. Although the incidence of cataracts was less, there was increase in pigment dispersion and angle closure glaucoma.22,156 Phakic IOLs with decreased diameter and less vault, by virtue of their close proximity to the crystalline lens, could increase the incidence of cataract25 and lead to decentration, halos, and glare. A central vault of 0.15 mm has been described as ideal to protect the lens from the IOL contact.129 Insufficient vault might provoke cataract formation by mechanical irritation or traumatism of the anterior capsule.46 Poor vault could also lead to disturbances in aqueous flow, interference with lens metabolism for preventing oxidative damage,176 and cataract formation.153 In addition, IOL rotation and change in vault were found during accommodation and pupil light response.127,163,177 This anteroposterior movement and rotation of the IOL might cause repeated microtrauma to the natural lens and hence cataract development.7,46,141 Furthermore, the extent of vault could also be reduced over time due to increasing thickness of the crystalline lens or erosion of the PC pIOL into the sulcus.76,129,164 Most authors attribute late-onset cataract to IOL–crystalline contact and/or repeated microtrauma resulting from IOL movement.23,51,55 In our analysis, in reports in which data were available, 36 eyes (80%) were documented to have poor vault among the 45 late-onset ASCs (≥1 year). It was suspected that central and/or peripheral contact between the IOL and the crystalline lens was responsible for the high rate of ASC in the PC pIOL group129,140. The evidence of ring opacity corresponding to the area of “touch” of the lens capsule to the optic edge of the Chiron-Adatomed IOL supported this hypothesis.129 Further evidence was revealed by Sarikkola et al.141 that the appearance of ASC was first seen beneath the thickest part of the ICL as a circle on the anterior surface of the natural lens in myopic eyes and in the central area in hyperopic eyes.

Vaulting may be affected by the design of a pIOL. An increase in vault of the Staar Collamer pIOL compared with the Chiron-Adatomed IOL significantly decreased cataractogenesis.112 Zaldivar et al.178 report that Staar Collamer ICLs with the V3 and V4 models had less vaulting than the V1 and V2 models and hence a higher incidence of cataract formation. They found that the first-generation pIOLs (up to model V2), which largely vaulted over the crystalline lens, led to no ICL-induced cataracts in a series of 124 eyes.113 In contrast, with the third and fourth generations, which had a better design but less vault, an 8.5% rate of cataract was reported during 3-year follow-up.178

By decreasing the posterior radius of the ICL’s curvature, the model V4 ICL was more curved than the model V3 and presumed to offer better vaulting.122 In a short-term study by Gonvers et al.,122 the model V4 offered better vaulting over the crystalline lens than the model V3, which should decrease the risk for cataract. Sanders and Vukich51 also found significant pronounced vaulting with the model V4 compared with the model V3. The presence of poor vault in the V3 group compared with that in the V4 group (23.6% versus 4.3%) was highly correlated with the development of late-onset ASCs (9.2% versus 0.6%).51 This was also observed by Sarikkola et al.141. The model V3 ICL is not currently in use due to poor vault and potential cataractogenesis.112 However, in another study, Gonvers et al.129 found no statistically significant difference in vaulting between models V3 and V4. Considering this, there appears to be no definite consensus in the literature that modifying the design from V3 to V4 has resulted in better vaulting.129

The ability to measure the sulcus-to-sulcus distance may provide better biometric parameters for surgical
planning for adequate vaulting of the PC pIOL than the currently employed WTW measurement.122,163 Excessive vaulting also may induce contact between the haptics of the ICL and the periphery of the crystalline lens.127,138,179

Lens Material All recent nonfoldable IOLs in the AC pIOL and IF pIOL groups were made of poly(methyl methacrylate) (PMMA). High-molecular-weight PMMA is biologically almost inert and can be tolerated by the eye over the long term,173 although low-molecular-weight PMMA has led to a tragic history of long-term snowflake degeneration.180 The ZB5MF pIOL, a modification of ZB5M model, contains a fluorine surface treatment to improve biocompatibility of the lens.53,60 In the PC pIOL group, the earlier silicone IOLs (Fyodorov and Chiron-Adatomed) were relatively hydrophobic, bioincompatible,150 and associated with a higher incidence of cataract.156 Staar Collamer ICLs contain collagen, are hydrophilic and biocompatible,112 and are therefore believed to cause fewer cataracts.40 Trindade et al.,111,126 observed no lens opacification for more than 2 years in eyes with ICL implantation despite IOL–crystalline contact at the optic–haptic junction in the midperiphery. They credit this to the proper biocompatibility of the ICL hydrophilic material. Even though PRLs are made of silicone, they have a higher refractive index and are ultrathin.41 The hydrophobic nature of the material is postulated to allow the IOL to “float” on the natural lens.40

Surgeon-Dependent Factors

Surgical Trauma Surgical trauma was one of the most important risk factors in the PC pIOL group in early cataract cases.52,128 Inadvertent lens touch during PC pIOL insertion usually resulted in nonprogressive ASCs or anterior cortical cataracts45,55,120 whereas more vigorous repositioning of an inverted IOL within the eye might induce visually significant ASC.115 In a series by Sanders and Vukich,51 removal and reinsertion during surgery or on the same day of surgery as a result of the ICL being implanted upside down was associated with increased cataract. Sánchez-Galeana et al.,52 and Sanders and Vukich51 observed that most of the early-onset (≤ 3 months) ASCs were frequently asymptomatic and highly associated with surgical trauma. In our analysis, of the 17 eyes with cataract developing within 1 week of PC pIOL implantation, 14 had a history of intraoperative trauma and 2 had severe postoperative inflammation.45,48,50,51,55,110,128 The crystalline lens may also be damaged during surgical iridectomy46,68 or by preoperative Nd:YAG laser treatment,115,137,181 causing cataract.74

Surgeon Learning Curve Sanders and Vukich51 found that the incidence of lens opacities increased with inexperienced surgeons (within the first 7 implantations of each surgeon) compared with later eyes. Two of 19 surgeons were responsible for the majority of observed lens opacities. Sánchez-Galeana et al.52 report that 79% opacities in the first or second implantation of inexperienced surgeons. Sánchez-Galeana et al. also report that with increased surgical experience, the incidence of opacities dropped from 19% to 0% with the same surgeon.52

Other Factors

Length of Follow-up The incidence of cataracts was higher in patients followed for a longer period.109,112 Sanders et al.,43 Menezo et al.,74,75,96 Trindade and Pereira,126 Fink et al.,127 Gonvers et al.,129 and Sarikkola et al.141 found that cataracts that were not seen in previous shorter-term clinical series54,89,111,113,122,128 occurred after a longer follow-up. Cataracts developing over a longer follow-up were attributed to the impact of the IOL on the crystalline lens109,112,127 and/or the natural morbidity of senile cataract.74,75,87,96,129

Type of Cataract The rate of progression varied for different types of cataracts. In our study, we found that the most common type of new-onset cataract in the AC and IF groups was NS and in the PC group was ASC. New-onset NS cataracts in the AC and IF groups were observed years after implantation and were not ascribed to pIOL surgery.60,75,94,96 All new-onset NS cataracts in the AC and IF groups required surgery. Most new-onset ASCs in the PC group were nonprogressive (focal ASCs) or slowly progressive, and 31.19% required surgery. Slowly progressive ASCs, which might impair vision, could present as ring configurations concentric to the optical zone; as central gray–white opacities; or as a diffuse, dense pattern.52,75,112 Cataracts would progress faster once NS developed after diffuse ASC.52 All new-onset NS cataracts in the PC group were visually significant. All new-onset cortical cataracts in each group were nonprogressive and asymptomatic. They appeared as discrete anterior cortical opacities and/or vacuoles and were strongly associated with surgical trauma.3,45,78 Few new-onset cataracts were PSC, although PSC is a specific type of cataract in high myopia or in the normal aging population.171,182,183

Thus far, we have discussed the correlation between surgical trauma during pIOL implantation and the formation of ASCs or anterior cortical cataracts. Which type of cataract is more likely to develop after anterior segment procedures, even without lenticular touch? For instance, after trabeculectomy, cataract formation is considered to be more likely in cases of AC
shallowing, air in the AC, IOP rise, hypotony, hyphema, uveitis, and possibly irregular circulation of aqueous through the fistula. However, these cataracts tend to be NS or PSC. High myopia alone can predispose to cataract formation, but usually of the PSC or NS variety. Anterior subcapsular cataract is not a typical form of senile cataract. In our study, 90.58% of all new-onset cataracts after PC pIOL implantation were ASCs. If unspecified type were excluded, 96.19% of all new-onset cataracts after PC pIOL implantation were ASCs. This might imply that ASC formation is related to PC pIOL, per se. Early-onset ASCs (≤3 months after surgery) were closely related to surgical trauma, whereas late-onset (≥1 year after surgery) ASCs were related to poor vault. Anterior subcapsular cataract was considered to be typical of a PC pIOL-induced cataract.

Steroid Use Steroids were more commonly associated with increased IOP than with cataracts. However, one cannot ignore the fact that an excessive postoperative steroid regimen was a potential cause of cataract formation.

Pilocarpine Use Cataract development due to PC flattening could occur immediately after the administration of cholinergic agonists such as pilocarpine in an eye with a hyperopic ICL.

Ophthalmic Viscosurgical Devices Surgical procedures for different types of pIOL explantation and cataract surgery should use high-viscosity OVDs liberally to protect corneal endothelium. The explantation wound should be made slightly wider than the total diameter of the nonfoldable pIOL to ensure its extraction from the eye without difficulty. Usually, 2 side-port incisions at the opposite directions perpendicular to the scleral wound were made to facilitate further intraocular manipulation in the AC and IF groups. The importance of excluding the existence of unrevealed synchias in the AC angle before rotating the superior haptic out from the angle when removing an AC pIOL could not be overemphasized. Once the haptic was extracted into the scleral tunnel, the AC pIOL could easily be explaned with a forcesps. Then, the scleral wound was partially closed for phacoemulsification. The technique of explanting an IF pIOL was relatively simple. The iris was liberated from the slits of the haptic, and the freed IOL was oriented parallel to the scleral wound and extracted from the AC with ease. Again, the scleral tunnel was partially sutured for phacoemulsification. When explanting earlier models of silicone PC pIOL, the key point was to check and lyse any possible adherence between the pIOL and the anterior capsule of the crystalline lens before the pIOL was simply extracted. Explantation of an ICL was easy to perform through the original, unenlarged, primary clear corneal incision because of its remarkable elasticity. Cataract surgery with phacoemulsification and PC IOL implantation could be performed in a routine fashion in all pIOL groups. Alió et al. believed it was safer to perform phacoemulsification in the AC in high myopic eyes because of the long scleral tunnel and the soft nature of the cataracts. The biometry and IOL power calculation for cataract operation did not seem to be distorted by the presence of a pIOL except for silicone PC pIOLs. The amount of error in ultrasound measurement depends on the power of the pIOL and its material. Hoffer provided a mathematical correction of ultrasound AL measurement in the presence of a pIOL. The correction value is highest with a silicone plate pIOL in an eye with very high hyperopia and lowest with an ICL in an eye with very high myopia. In all reported cases, cataract surgery followed by PC IOL implantation was successful. The final visual acuity could be restored to the level before cataract development.

It is dangerous to jump to the conclusion that IF pIOLs are “better” than PC pIOLs solely because the incidence of cataract was lowest with the IF pIOLs. Use of pIOLs implanted in the ACs was limited by chronic corneal endothelial loss, which might ensue from intermittent touch between the IOL optic edge and the corneal midperiphery during eye rubbing. With the modification of new generations of pIOLs with lower and thinner profiles and the instruction to patients not to rub their eyes, the possibility of IOL-cornea touch could be minimized. Another reason for progressive corneal endothelial loss, particularly with IF pIOLs, was chronic subclinical inflammation. The reports of corneal decompensation and transplantation in the IF group raises the alarm of regular continuous monitoring of the health of the corneal endothelium. It is mandatory to explant the pIOL before a critical breakdown is recognized by corneal edema. To ensure long-term safety, eyes to have implantation of an IF pIOL must have sufficient ACD (at least from 3.0 to 3.6 mm, depending on the age of the patient and the IOL power) to provide a safe clearance between the IOL and the endothelium. Patients who have IF pIOL implantation must understand and accept the need for scheduled examinations of the corneal endothelium every 6 to 12 months throughout their lives. They should visit ophthalmic practices and clinics where authoritative noncontact specular
microscopy and photography of the endothelium are available as a record for future comparison.87,92,93 The local ophthalmologist must also understand the necessity of endothelial microscopy and if required, be able to refer the patient to a corneal specialist. Under all these circumstances, IF pIOLs may be better than PC pIOLs. Ten-year follow-up results reported by Tahzib et al.109 show that implantation of an Artisan pIOL for the correction of moderate to high myopia is a stable, predictable, and safe method when strict inclusion criteria for surgery are applied. There was no significant loss of corneal endothelial cells and no reports of long-term glare. Newer imaging techniques such as OCT are important to exclude patients at risk for synchia formation and endothelial cell loss.164 However, whether patients will comply with the life-long, stringent stipulation of constant checkups is highly questionable.93

CONCLUSION

Phakic IOL implantation as performed today seems to be a safe and promising alternative to keratorefractive procedures. The incidence of cataract formation was relatively higher in eyes with PC pIOLs, which might be due to the close proximity of the IOL to the natural lens. Anterior subcapsular cataract was a predominant and typical type of cataract in the PC pIOL group. Punctate ASC, usually nonprogressive, was probably related to surgical trauma. Diffuse pattern, ring-pattern, and central dense pattern ASCs in the PC group were slowly progressive and might be associated with insufficient vault. Nuclear sclerotic cataracts in the AC and IF groups were unrelated to pIOL surgery, and all patients with new-onset NS in theses 2 groups required cataract surgery. Once NS was detected after pIOL surgery, no matter which anatomic location the pIOL was implanted in, there was a very high likelihood of significant visual impairment. Therefore, patients having pIOL implantation should be regularly examined for any NS development. Although most papers in our study excluded preexisting cataracts, we still found that approximately 20% of preexisting cataracts required definitive cataract surgery. Although the technique to explant pIOLs is not difficult, one should estimate the risks of pIOL implantation and explantation surgery in addition to cataract surgery in eyes with high myopia. It is probably better to warn patients who have preexisting opacities about the possibility of cataract progression and reoperation and to reconsider refractive lensectomy plus PC IOL implantation instead. Most patients had excellent visual restoration after cataract surgery. In addition to cataract, pIOL removal must be considered in eyes with AC pIOLs that develop halos and/or glare in the AC group and in eyes with IF pIOLs that have endothelial loss. Intraocular pressure increase was the second most common reason for removal of PC pIOLs.

The short learning curve, reversibility, lens exchangeability, and excellent visual rehabilitation make pIOL surgery appealing. Although the initial results are promising, repeat surgery for cataract may be unacceptable to young patients with low to intermediate myopia whose level of expectation is high. Apart from cataracts, which can be handled surgically, other vision-threatening complications may lead to disastrous consequences. Risks of an invasive intraocular procedure must also be kept in mind.

Careful patient selection is an essential prerequisite to pIOL implantation. Life-long, yearly follow-up may be necessary to ensure that pIOLs are safe for the patient. Patients having PC pIOL implantation should be informed of the potential risk for cataract development and corneal endothelial decompensation.

REFERENCES

REVIEW/UPDATE: CATARACT AFTER PHAKIC IOL IMPLANTATION

175. Maldonado MJ, García-Feijóo J, Benítez Del Castillo JM, Teutsch P. Cataractous changes due to posterior chamber flattening with a posterior chamber phakic intraocular lens secondary to the administration of pilocarpine. Ophthalmology 2006; 113:1283–1288